# The Journey of O3b The World's First Broadband NGSO Constellation

2022 Clarksburg Seminar on Advanced Satellite Communications Ashok Kolar Rao, VP Product Development, SES

## The Path







**O3b mPOWER evolution** massive scale, performance, & flexibility

## O3b Classic compared to GEO

500ms



- A different kind of satellite:
  - The Medium Earth Orbit reduces delay by 75% compared with GEO – round trip delay less than 125 msecs
  - O3b's low latency improves the quality of voice and data services
  - Much lower cost to build and launch compared with GEO
  - Do not need to apply for orbital slots can launch tens or hundreds of satellites into the equatorial arc at that altitude
  - Fully steerable beams are ideal for hot spot applications

# O3b Classic Satellite Architecture

- 2 Gateway Antennas per satellite; one for each region and independently steerable ±26°
- Circular polarization is used RHCP and LHCP for each Gateway antenna
- The Antennas typical configuration is Terminal/Gateway Cross Strapped

- The Space Vehicle is designed, integrated and tested, by Thales Alenia Space.
- Leveraging the Globalstar 2 heritage with redundant Satellite/payload platforms.

ThalesAlenia



- 10 independently steerable Customer Beam Antennas which are used to point a customer beam to any location within +/-45° latitude.
- 5 beams per Region, 2 regions per satellite. Circular polarization is used RHCP and LHCP for each region
- Each customer beam is configured with a 216 MHz Ka-band transponder in the forward direction
- a 216 MHz Ka-band transponder in the return direction
- Each Satellite has 10 x 65 W Ka Band TWT Amplifiers providing 46dBW EIRP

# The Comsat Connection

#### Viasat Comsat Labs Developed MEOLink Modem

- DVB-S2 SCPC and Point to Multipoint
- Symbol Rates From 10 Msps to 180Msps in 1Msps steps
- All Modulations and Codes (QPSK, 8PSK, 16APSK, 32APSK)
- 810Mbps Peak Data Rate Each Direction

### **Dual DVB-S2 Receivers**

- Make-Before-Break Operation
   During Satellite Handover
- No Lost or Repeated Packets
- Only single unit required for handover





### O3b Classic vs O3b mPower

#### O3b Classic (F1~F20)

- Dedicated User and GW Beams, users connect to one of two GWs per region (limited flexibility)
- 10 User Beams (700 km/beam)
- 4-7M km<sup>2</sup> of coverage
- 4.4 GHz total spectrum
- 6 Gbps per Spacecraft (to 1.2m terminals)

#### Markets <u>best</u> served:

- Trunk
- Maritime (local)
- Government

### User Terminals

### 10 to 25x Improvement

GW/NOC

#### mPower:

- Full flexibility: up to 5,000 formed beams per spacecraft >> any antenna to any antenna connectivity
- +/- 26° FOV Phased Array ubiquitous coverage
- Each beam can get up to 2x2.5 GHz of bandwidth – Frequencies can be reused
- Beams share power
- Allocate bandwidth and power to beam as necessary
- 100 million km<sup>2</sup> of coverage per spacecraft
- 100 Gbps per Spacecraft (to 1.2m terminals)

#### Markets targeted:

- Trunk
- Maritime (regional)
- Government (ISR, Navy, COTP)
- Aviation (regional)
- Aviation (global)
- Backhaul
- Enterprise
  - Energy

### In-Country GW

### **User Terminals**

# O3b mPOWER Summary\*

| O3b mPOWER            |                         |
|-----------------------|-------------------------|
| Mission duration      | 12 years (planned)      |
|                       |                         |
| Spacecraft properties |                         |
| Spacecraft type       | All-electric propulsion |
| <u>Bus</u>            | <u>BSS-702X</u>         |
| Manufacturer          | Boeing                  |
| Launch mass           | 1700 kg                 |
|                       |                         |
| Start of mission      |                         |
| Launch date           | Q2 2022                 |
| Rocket                | Falcon 9                |
| Launch site           | Cape Canaveral,         |
| Contractor            | <u>SpaceX</u>           |
|                       |                         |
| Orbital parameters    |                         |
| Reference system      | Geocentric orbit        |
| Regime                | Medium Earth orbit      |
| Altitude              | 8,030 km (5,000 mi)     |

\* Wikipedia, March 2022





### O3b mPOWER Deployment Schedule

 LAUNCH
 SpaceX Falcon 9

 O3b mPOWER
 1-3
 April '22

 O3b mPOWER
 4-6
 May '22

 O3b mPOWER
 7-9
 H2 '22

 O3b mPOWER
 10-11
 H2 '24

